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Table S1. Pro-angiogenic and anti-angiogenic effects of proteases 
Experimental studies reporting positive and negative effects of proteases on functional vessel growth. EC: 
endothelial cell; BAEC: bovine adrenal-cortex derived EC; HUVEC: human umbilical vein EC; OIR: 
oxygen-induced retinopathy. 
 
Ref System Mode of observation Observations 
 
Proteases hindering functional vessel growth 
(1) Bovine adrenal cortical ECs EC proliferation Plasmin cleaved VEGF165 reduces cell 

proliferation (EC50) by ~100-fold.  
(2) Tumor xenograft Tumor volume Cleaved VEGF results in weak tumor growth, 

compared to VEGF164. 
(3) Mouse retina oxygen-induced 

retinopathy 
Vascular morphology VEGF cleavage induces vascular 

malformations, compared to absence of 
cleavage. 

(4) 
 
(5) 
 
(6) 

Chronic venous leg ulcer 
 
Diabetic mouse wound 
 
Tumor xenograft 

SDS-PAGE 
 
Wound closure kinetics 
 
Vessel growth 

VEGF degradation by proteases results in 
decreased levels of active VEGF and 
decreased angiogenesis response. Degradation 
by plasmin leads to decreased angiogenesis 
and wound closure rates. 

 
Proteases inducing functional vessel growth 
(7) 
 
(8) 

HUVEC culture 
 
Tumor xenograft 

Vessel morphology 
 
Tumor volume 

Proteases degrade VEGF inhibitors (e.g. 
CTGF, sVEGFR1) to induce angiogenesis 

(9) 
 
(10) 

BAEC culture 
 
HUVEC 

EC proliferation 
 
EC proliferation 

Cleavage of VEGF183/VEGF189 or heparin co-
presentation activates mitogenic behavior of 
these isoforms. 

(11) Matrix-tethered VEGF + flow Capillary formation Proteases induce VEGF gradients and 
capillary morphogenesis 

(12) Colon tumor explants Vessel growth Proteases cleave HSPG core protein to liberate 
VEGF, induce angiogenesis 

(13) 
 
(14) 
 
(15) 
 
(16) 
 
(17) 

Pancreatic islet tumor explants 
 
Breast tumor mouse 
 
Breast tumor mouse 
 
Glioblastoma mouse 
 
Cervical cancer mouse 

Tumor volume 
 
Tumor volume 
 
Tumor volume 
 
Vessel morphology  
 
Tumor volume 

In most systems, MMP9 liberates VEGF and 
induces angiogenesis and/or tumor growth. In 
glioblastoma, MMP9 release of VEGF 
increases pathological angiogenesis but this 
impedes perivascular tumor invasion. 

 



 S-3 

Table S2. Experimental observations of VEGF gradients 
Experimental studies visualizing VEGF gradients and the spatial range of VEGF isoforms.  
 
Ref System Mode of observation Observations of studies 
 
Visualization of VEGF gradients through immunostaining 
(18) 
 
(19) 
 
(20) 

Mouse hindbrain 
 
Mouse retina 
 
Mouse cerebellum 

Immunostaining 
 
Immunostaining 
 
Immunostaining 

Heparin binding isoforms distribute near origin of 
secretion and show localization to cell surfaces 
with little in interstitium. VEGF120 is noted to have 
higher concentrations at a distance from source 
and shows intense staining in the interstitium. 

(21) Zebrafish Immunostaining Loss of perlecan results in more widespread 
VEGF distribution and increased VEGF 
concentrations. 

(22) 
 
(23) 
 
(24) 

Tumor cell culture 
 
Tumor xenograft 
 
Bruch’s Limiting Membrane ex 
vivo 

Immunostaining 
 
Immunostaining 
 
Immunostaining 

In xenograft, different VEGF isoforms show 
similar binding to endothelial cells and heparin-
affinity dependent binding to tumor cells. 
VEGF120 staining is nearly absent from ECM or 
tumor cells in all three systems. 

 
Spatial range of vascular effects of VEGF isoforms and released forms 
(23) 
 
(2) 
 
(25) 
 
(26) 
 
(27) 

Tumor xenograft 
 
Tumor xenograft 
 
Rabbit cornea 
 
Rabbit cornea 
 
CAM Assay 

Vessel morphology 
 
Vessel morphology 
 
Angiogenesis 
 
Angiogenesis 
 
Cell Proliferation 

VEGF120 is more effective in activating 
peritumoral vasculature than VEGF188. VEGF188 
and protease-resistant VEGF have weaker 
peritumoral effects. VEGF121 shows earlier onset 
and/or greater angiogenesis in rabbit corneal 
assay. VEGF121 had greater range in CAM assay. 
Vascular effects in CAM were mediated by 
intussusceptive angiogenesis. 

(6) Tumor xenograft Vessel morphology Nondegradable VEGF has greatest spatial range 
(VEGF121 < VEGF165 < VEGF111). 

(13) 
 
(3) 

Pancreatic islet explant 
 
Mouse OIR 

Vessel activation 
 
Vessel morphology 

MMP9-released VEGF induces new vessel 
sprouts.  
VEGF cleavage by MMP12 induces vascular 
malformations in nascent vessels. 

(28) Mouse epithelial bud Bud morphology FGF10 (matrix binding form) results in a localized 
proliferation compared to FGF7 (diffusible form). 
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Table S3. Experimental observations of soluble and matrix-/receptor-bound VEGF levels 
 
Ref System Mode of observation Observations of studies 
 
Levels of soluble VEGF 
(29) 
 
(2) 

Eye 
 
Tumor xenografts, serum 

ELISA 
 
ELISA 

Elevated levels of intraocular and serum VEGF in 
systems secreting non-heparin-binding (VEGF120 
and VEGF113) isoforms relative to VEGF164, 
VEGF188 systems. 

(6) Tumor xenografts, serum ELISA No difference in serum concentration between 
tumors secreting different isoforms 

(30) 
 
(26) 

Tumor cell culture 
 
Tumor cell culture 

Conditioned medium 
(CM) + Heparin, ELISA 

Soluble VEGF in VEGF120 > VEGF165 > VEGF189 
secreting cells. Bound fraction increases with 
isoform. 

 
Levels of immunohistochemically or immunofluorescently stained VEGF 
(24)  
 
(22) 
 
(23) 
 
(14) 

Bruch’s Limiting Membrane 
 
Tumor Cell culture 
 
Tumor xenografts 
 
Tumor xenografts 

Immunostaining 
 
Immunostaining 
 
Immunostaining 
 
Immunostaining 

Peritumoral and ECM staining of VEGF directly 
correlated with VEGF isoform’s heparin binding 
affinity. VEGF120-secreting systems show no 
parenchymal or ECM staining (only vascular 
staining) while VEGF188-secreting systems show 
strong interstitial staining. VEGF has strong 
localization when MMP9 is weakly active and 
disperse staining when MMP9 is highly active. 

(18) 
 
(19) 
 
(20) 

Mouse hindbrain 
 
Mouse retina 
 
Mouse cerebellum 

Immunostaining 
 
Immunostaining 
 
Immunostaining 

In contrast to above studies, VEGF120-secreting 
systems show strong VEGF staining, similar in 
magnitude to wildtype systems. 

 
Levels of vascular receptor-bound VEGF 
(23) Tumor xenograft Immunostaining All isoforms yield strong VEGF binding to 

vessels. Autocrine VEGF secretion by vessels may 
contribute. 

(13) 
 
(14) 
 
(15) 
 
(17) 
 
(16)  
 
(3) 

Pancreatic islet tumor  
 
Breast cancer 
 
Breast cancer 
 
Cervical cancer 
 
Glioblastoma 
 
Oxygen-induced retinopathy 

Immunostaining 
 
Immunostaining 
 
Immunostaining 
 
Immunostaining 
 
Immunostaining 
 
Immunostaining 

Increased intensity of VEGF-VEGFR2 staining in 
systems that contain high levels of active protease. 
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Table S4. Experimental observations of total VEGF levels 
 
Ref System Mode of observation Observations of studies 
 
Levels of total VEGF 
(30) 
 
(31) 
 
(26) 

Tumor cell culture 
 
Tumor cell culture 
 
Tumor cell culture 

CM+heparin, ELISA 
 
CM+suramin, ELISA 
 
CM+suramin, ELISA 

In tumor cell cultures, total level of VEGF, after 
liberation of bound VEGF by heparin or suramin, 
is similar between cells transfected with different 
isoforms. 

(31) 
 
(26) 

Tumor xenograft 
 
Tumor xenograft 

Tissue lysate ELISA 
 
Tissue lysate ELISA 

In contrast to in vitro culture, total VEGF levels in 
tumors are significantly higher in VEGF164-
secreting tumors than in VEGF120-secreting 
tumors. 

(21) Zebrafish Immunoblotting Total VEGF is higher in zebrafish embryos with 
perlecan knockdown 

(14) 
 
(15)  
 
(16, 
32) 

Breast cancer 
 
Breast tumor xenograft 
 
Glioblastoma  
(WT vs. MMP9-KO) 
 

Tissue ELISA/enzyme 
immunoassay 
 

Total VEGF levels are not affected by proteolytic 
release. 

(33) 
 
(32) 

Meta-analysis 
 
Whole mouse study  

Modeling 
 
Real time RT-PCR 
/serum ELISA 

Analysis suggests most tissue VEGF is located 
intracellularly. Endothelial intracellular VEGF is a 
negligible fraction of this total VEGF. 
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Table S5. Relative isoform expression in various organs and tumors.  
The data in this table was used to generate Figure 2 in this manuscript. 121: VEGF121; 165: VEGF165; 
Ex6: Exon 6-containing isoforms. WB: Western blot. *: RT-PCR bands analyzed using ImageJ (NIH). 
When ranges were provided, the midpoint was used for Figure 2. 
 
Ref % 121 % 165 % Ex6 System Tissue Method 
(34) 37 23 40 Tumor, human Bladder cancer, <=pT1 RT-PCR 
(34) 41 23 36 Tumor, human Bladder cancer, >pT1 RT-PCR 
(35) ~40 ~60 ~0 Embryonic mouse Bone qRT-PCR 
(36) 57 31 11 Embryonic mouse Bone qRT-PCR 
(37) ~33 ~37 ~30 Tumor culture U87MG cell line (Brain)  WB, RT-PCR* 
(38) 18 70 12 Adult mouse Brain RT-PCR 
(39) 14 80 6 Adult mouse Brain RT-PCR 
(20) 16 81 3 Embryonic mouse Cerebellum RT-PCR 
(40) 48 45 7 Tumor culture BT20 cell line (Breast) RT-PCR 
(40) 49 41 10 Tumor culture MCF-7 cell line (Breast) RT-PCR 
(40) 46 45 9 Tumor culture MDA-MB-231 cell line (Breast) RT-PCR 
(40) 64 35 1 Tumor culture MDA-MB-453 cell line (Breast) RT-PCR 
(40) 55 40 5 Tumor culture T-47D cell line (Breast) RT-PCR 
(40) 72 28 0 Tumor culture MCF-12A cell line (Breast) RT-PCR 
(41) ~56 ~43 ~1 Tumor, human Colon RT-PCR* 
(41) ~78 ~22 ~0 Normal human Colon, non-tumor tissue RT-PCR* 
(42) 4 95 1 Embryonic, mouse Eye (lens) qPCR 
(39) 26 69 5 Adult mouse Eye RT-PCR 
(38) 7 91 2 Adult mouse Retina RT-PCR 
(38) 25 75 0 Adult mouse Choroid/Retinal pigment epithelium RT-PCR 
(39) 11 53 36 Adult mouse Heart RT-PCR 
(43) 3 29 68 Normal rat Heart RT-PCR 
(44) 5 59 35 Normal mouse Heart qRT-PCR 
(45) 19 59 22 Normal human Right atrium qRT-PCR 
(46) 70 30 0 Tumor, human Renal cell cancer Competitive RT-PCR 
(39) 20 63 17 Adult mouse Kidney RT-PCR 
(43) 18 51 31 Normal rat Kidney RT-PCR 
(44) 37 48 15 Normal mouse Kidney qRT-PCR 
(39) 9 55 36 Adult mouse Liver RT-PCR 
(44) 30 47 23 Normal mouse Liver qRT-PCR 
(47) 68 24 8 Tumor, human NSCLC  (median values) RT-PCR 
(48) 73 27 0 Tumor, human NSCLC RT-PCR 
(48) 71 28 1 Normal human NSCLC adjacent tissue RT-PCR 
(41) ~69 ~28 ~3 Tumor, human Lung RT-PCR* 
(41) ~43 ~8 ~49 Normal human Lung, non-tumor tissue RT-PCR* 
(49) 50 40 10 Embryonic rat Lung RT-PCR 
(49) 25 25 50 Adult, rat Lung RT-PCR 
(39) 18 30 52 Embryonic mouse Lung RT-PCR 
(44) 29 24 47 Normal, mouse Lung qRT-PCR 
(38) 9 22 69 Adult, mouse Lung RT-PCR 
(39) 8 77 15 Adult mouse Muscle RT-PCR 
(43) 6 51 43 Normal, rat Muscle RT-PCR 
(50) 19 46 35 Normal, rat Muscle RT_PCR 
(40) 47 42 11 Tumor culture OVCAR-3 cell line (Ovary) RT-PCR 
(40) 70 25 5 Tumor culture SK-OV-3 cell line (Ovary) RT-PCR 
(39) 42 53 5 Adult mouse Ovary RT-PCR 
(51) 23 63 15 Normal, human Prostate, normal qRT-PCR 
(51) 45 46 8 Tumor, human Prostate, cancer qRT-PCR 
(39) 45 48 7 Adult mouse Skin RT-PCR 
(52) 52-70 26-42 4-8 Tumor, human Melanoma RT-PCR 
(53) 56 33 11 Tumor, human HNSCC + node metastasis RT-PCR 
(53) 61 28 11 Tumor, human HNSCC, no node metastasis RT-PCR 
(53) 53 33 14 Normal, human Normal tonsil mucosa RT-PCR 
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Table S6. Experimental studies illustrating atypical phenotypes of VEGF isoforms 
Experimental studies that report observations at odds with the typical monotonic ordering of vascular 
phenotypes vs. isoform size and matrix affinity. Most comparisons are made between transgenic systems 
constructed to express only one isoform, at a constant secretion rate. Comparisons are not made between 
the levels of the different VEGF isoforms in a single system expressing multiple isoforms simultaneously, 
e.g. wildtype hindbrain. 
 
Ref System Mode of observation Observations of studies 
 
VEGF121 is more angiogenic and tumorigenic than VEGF165 
(25) Rabbit cornea Vessel imaging VEGF121 implants induced greater 

angiogenesis than VEGF165 implants 
(26) Tumor xenograft Tumor growth VEGF121 induced faster angiogenesis and 

tumor growth than VEGF165 or VEGF189 

 
VEGF188 vs. VEGF164Δ108-118 vs. VEGF111 
(23) Tumor xenograft Tumor growth kinetics VEGF188: thin, hypervascular angiogenesis and 

no potentiation of tumor growth 
(2) Tumor xenograft Tumor growth kinetics VEGF164∆108-118: thin, hypervascular 

angiogenesis and very strong potentiation of 
tumor growth 

(6) Tumor xenograft Vascular phenotype VEGF111 (resistant to proteolysis): thin, 
hypervascular angiogenesis periturmorally, 
decreased vascularization intratumorally. 
Protease resistance rather than matrix binding 
may be cause for hypervascular networks. 

 
VEGF isoforms showing similar vascular patterning 
(54) 
 
(19) 

Mouse skeletal muscle 
 
Mouse retina 

Vessel morphology 
 
Vessel morphology 

Under conditions of lens- and myoblast-
overexpression, VEGF120, VEGF164, and 
VEGF188 induce the same malformations to 
existing vasculature.  

(18) HUVEC culture Cell proliferation VEGF120 and VEGF164 induce same 
proliferatory response. 
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